Search results

1 – 1 of 1
Article
Publication date: 18 October 2018

Satafa Sanogo and Frédéric Messine

In this work, the authors deal with topology optimization in electromagnetism using solid isotropic material with penalization (SIMP) method associated with a gradient-based…

Abstract

Purpose

In this work, the authors deal with topology optimization in electromagnetism using solid isotropic material with penalization (SIMP) method associated with a gradient-based algorithm. The purpose of this study is to propose and investigate the impact of new generalized material interpolation scheme (MIS) used in SIMP approaches.

Design/methodology/approach

The variable domains of this kind of electromagnetism design problem are decomposed into small squares which represent a material point (iron here) or void. A least square function where the magnetic field in a target zone has to be as close as possible to a fixed one is minimized. Then the binary optimization problem is relaxed to a continuous one. By using the adjoint variable method, the gradient is provided. By penalizing the objective function using MIS, gradient-based algorithms can then be directly applied to provide efficient solutions close to the binary ones.

Findings

In this work, new general MISs are proposed. It is shown on numerous numerical instances that the so-obtained design solutions are more precise to define the zones with or without materials.

Research limitations/implications

Only the linearity of the materials is addressed because the associated adjoint method needs this assumption. However, the new penalization approaches are not dependent directly on this assumption.

Originality/value

The new MISs are efficiently applied to design of a hall effect thruster (HET) magnetic circuits. Furthermore, these schemes are generic and can then be applied to other topology optimization applications in electromagnetism as well as and in mechanism.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1